The new upgraded standard for ERC-20 tokens is becoming more and more popular. It's fully backwards compatible, you can easily create one using the Openzeppelin contracts and there are many interesting new features not available in ERC-20.
Should you upgrade from ERC-20? Well let's look into what ERC-777 is.
Let's explore all features with direct code examples that you can simply follow via Remix. Let's create an ERC-777 contract:
// SPDX-License-Identifier: MIT
pragma solidity 0.7.4;
import "http://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.2.1-solc-0.7/contracts/token/ERC777/ERC777.sol";
import "http://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.2.1-solc-0.7/contracts/token/ERC777/IERC777Sender.sol";
import "http://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.2.1-solc-0.7/contracts/token/ERC777/IERC777Recipient.sol";
import "http://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.2.1-solc-0.7/contracts/introspection/ERC1820Implementer.sol";
import "http://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.2.1-solc-0.7/contracts/introspection/IERC1820Registry.sol";
contract TestERC777 is ERC777 {
constructor(
uint256 initialSupply,
address[] memory defaultOperators
) ERC777("Gold", "GLD", defaultOperators) {
_mint(msg.sender, initialSupply, "", "");
}
}
Don't worry about the imports and defaultOperators yet, we will need them later on.
Now that we have a deployed token, we can use it similarly to ERC-20. One difference though is a new transfer function. While in ERC-20 we used to do token.transfer(receiver, amount)
, now with ERC-777 we do token.send(receiver, amount, "")
.
Why this change?
First of all it's now more similar to the way of sending ETH via the send function. And then we also have a new bytes data
field which enables one to send arbitrary data along with the transfer. This can be used freely and thus adds extra functionality in the token transfer call. In the regular transfer case you would just leave it empty.
This is technically its own standard as the 777 standard was getting too large. So a new standard EIP-1820 was created. One reason the standard was needed was to enable the hooks functionality (see below). But let's look at the 1820 standard now.
We have previously looked at the EIP-165 standard here. As a quick recap EIP-165 allows smart contracts to register as implementing a specific interface. This can ensure no invalid smart contract addresses are used, for example preventing to send tokens to a contract that doesn't have functions to retrieve those tokens. In EIP-165 a contract must return true
for the supportsInterface(interfaceId)
function if it implements the given interface.
So what's different in EIP-1820?
In contrast to EIP-165 we don't have contracts themselves implementing a supportsInterface function themselves. Instead there is a single registry contract. This registry is always deployed on the same address for every Ethereum network: 0x1820a4b7618bde71dce8cdc73aab6c95905fad24
.
How is it ensured that the registry is always available at the same address for each network?
The solution for this is quite interesting. The so-called 'Nick method' was first described here. The cryptographic signature for signed transactions in Ethereum consists of three values, v, r and s. Usually these have to be generated by a private key and the ecrecover
function will retrieve the signer public key, i.e., the Ethereum address. But as it turns out you can choose these values at random and in 50% of the times will still get a valid signature.
This is being used by the EIP-1820 standard to define fixed values for v, r and s which produce a valid signature:
{
v: 27,
r: '0x1820182018201820182018201820182018201820182018201820182018201820'
s: '0x1820182018201820182018201820182018201820182018201820182018201820'
}
Now looking at these values, you can see that those are not random. So you also now know that nobody actually owns the private key that could have created this transaction signature. Since nobody owns the key and this signature is only valid to deploy the regular registry contract at the 1820... address, we have a guarantee that in every Ethereum network under the 0x1820a4b7618bde71dce8cdc73aab6c95905fad24 address:
Take a look at https://etherscan.io/address/0x1820a4b7618bde71dce8cdc73aab6c95905fad24#code to see the registry in action for the mainnet.
Given the single registry contract, anyone can call
function setInterfaceImplementer(address _addr, bytes32 _interfaceHash, address _implementer)
This can be another smart contract, but even EOA (human controlled addresses) can register an interface for their own address. This was not possible with EIP-165.
And EIP-1820 comes fully backwards compatible. When you call the function:
function getInterfaceImplementer(address _addr, bytes32 _interfaceHash) returns (address)
with an EIP-165 interface hash (ending with 28 zeroes), the call is just forwarded => _addr.supportsInterface(_interfaceHash)
. This also allows for some extra caching to save gas and store the EIP-165 call result for future usage.
Now that we understand the registry, we can look at the key feature of ERC-777 which are the new hooks. They allow someone to register a smart contract function to be executed every time tokens are sent from this address and/or received to this address.
Let's look at how one would implement both of these cases:
First a send hook. This will be our hook that executes every time tokens are about to be sent from the given address. If someone wants to use this hook for their own address, they would call
erc1820.setInterfaceImplementer(
myAddress,
TOKENS_SENDER_INTERFACE_HASH,
usingERC777SenderHook
)
usingERC777SenderHook.registerHookForAccount(
myAddress
)
Now every time tokens are sent from myAddress
, the tokensToSend
function will be executed. If you're curious how this is implemented in the ERC-777 token contract, take a look here:
address implementer = registry.getInterfaceImplementer(
from,
TOKENS_SENDER_INTERFACE_HASH
);
if (implementer != address(0)) {
IERC777Sender(implementer).tokensToSend(
operator,
from,
to,
amount,
userData,
operatorData
);
}
contract UsingERC777SenderHook is IERC777Sender, ERC1820Implementer {
// keccak256("ERC777TokensSender")
bytes32 constant private TOKENS_SENDER_INTERFACE_HASH =
0x29ddb589b1fb5fc7cf394961c1adf5f8c6454761adf795e67fe149f658abe895;
function registerHookForAccount(address account) public {
_registerInterfaceForAddress(
TOKENS_SENDER_INTERFACE_HASH,
account
);
}
function tokensToSend(
address operator,
address from,
address to,
uint256 amount,
bytes calldata userData,
bytes calldata operatorData
) external override {
// this will be run for every registered
// 'from' token transfers
}
}
Likewise we can create a hook that is run after the registered address has received tokens. In our example on the right we use this to register the contract itself as receiver and implementer.
Now every time tokens are received to our contract, the tokensReceived
function will be executed. If you're curious how this is implemented in the ERC-777 token contract, take a look here:
address implementer = registry.getInterfaceImplementer(
to,
TOKENS_RECIPIENT_INTERFACE_HASH
);
if (implementer != address(0)) {
IERC777Recipient(implementer).tokensReceived(
operator,
from,
to,
amount,
userData,
operatorData
);
} else {
require(!to.isContract());
}
As you can see, for contracts we actually revert in case no implementer is registered. This is a good thing! Now only contracts that are registered to receive tokens as our example on the right actually can receive tokens.
contract UsingERC777ReceiverHook is IERC777Recipient {
ERC777 public token;
IERC1820Registry public registry
= IERC1820Registry(0x1820a4B7618BdE71Dce8cdc73aAB6C95905faD24);
// keccak256('ERC777TokensRecipient')
bytes32 constant private TOKENS_RECIPIENT_INTERFACE_HASH
= 0xb281fc8c12954d22544db45de3159a39272895b169a852b314f9cc762e44c53b;
mapping(address => uint256) private _balances;
constructor() {
token = new TestERC777(100 ether, new address[](0));
token.transfer(msg.sender, 100 ether);
registry.setInterfaceImplementer(
address(this),
TOKENS_RECIPIENT_INTERFACE_HASH,
address(this)
);
}
function tokensReceived(
address /*operator*/,
address from,
address /*to*/,
uint256 amount,
bytes calldata /*userData*/,
bytes calldata /*operatorData*/
) external override {
require(msg.sender == address(token), "Invalid token");
// like approve + transferFrom, but only one tx
_balances[from] += amount;
}
}
Just like the ERC20-Permit standard, this also allows us to do approve + transferFrom in one transaction. What previously was
token.approve(contractAddress, 10e18)
)token.transferFrom(msg.sender, address(this), 10e18)
).Now becomes:
token.send(contractAddress, 10e18, "")
). That's it, our registered tokensReceived
function can internally call execute
.With ERC-777 you also get functionality to set operators. This can be a set of default operators defined in the constructor which will be able to transfer tokens on behalf of any address. Or they can be defined by the token holders themselves as being allowed to transfer on their behalfs.
Obviously you have to fully trust the operators. That's why for the most part you won't set a regular address as operator. Rather those operators are intended to be verified smart contracts such as an exchange, a cheque processor or an automatic charging system. Ensuring they cannot steal any money and behave in an expected manner.
One of the good things about 777 is that it's fully backwards compatible with ERC-20. This means all the same functions must exist including the identical events. Meaning you can actually just treat it as an ERC-20. But be aware of hooks.
If you treat it as ERC-20 or not, any registered send or receive hooks will still be triggered regardless. People can abuse this for reentrancy attacks. This has happened earlier this year for 300k USD lost on Uniswap v1. Simple solution: use reentrancy guards.
I wouldn't say this is a clear decision yet. Out in the wild the amount of popular ERC-777 tokens is still pretty small. There are additional risks involved with 777 as mentioned above with reentrancy. Also added complexity and people not being very familiar with it yet are reasons to not use it.
Ask yourself if any of the ERC-777 features would be of particular value to you. If not, stick to ERC-20. Otherwise you might want to give ERC-777 a try.
Solidity Developer
If you want maximum arbitrage performance, you need to swap tokens between exchanges in a single transaction. Or maybe you just want to save gas on certain swaps you perform regularly. Or maybe you have your own custom use case for swapping between decentralized exchanges. And of course maybe you...
Solana is a new blockchain focusing on performance. It supports smart contracts like Ethereum which they call Programs. You can develop those in Rust, but there's also a new project now to compile Solidity to Solana. In other words you can deploy your contracts written in Solidity now to Solana!...
We’ve covered mocking contracts before as well as the first version of the new mocking tool Smock 2. It simplifies the mocking process greatly and also gives you more testing power. You’ll be able to change the return values for functions as well as changing internal contract storage directly!...
We've covered several Layer 2 sidechains before: Polygon xDAI Binance Smart Chain Aurora Chain (NEAR) Optimism But this time we will do into the exciting new world of Cosmos. Many of the most interesting projects are currently building in the ecosystem and you can expect a lot to happen here in...
The EIP-2535 standard has several projects already using it, most notably Aavegotchi holding many millions of dollars. What is it and should you use it instead of the commonly used proxy upgrade pattern? What is a diamond? We're not talking about diamond programmer hands here of course. A diamond...
If you want maximum arbitrage performance, you need to swap tokens between exchanges in a single transaction. Or maybe you just want to save gas on certain swaps you perform regularly. Or maybe you have your own custom use case for swapping between decentralized exchanges. And of course maybe you...
Have you heard of Optimism? The new Optimistic VM enables Plasma but for smart contracts! What does that mean? Well read on. But what it enables is having a side chain with guarantees of the Ethereum mainnet chain. How cool is that? And you can already use it for several apps on mainnet....
We've covered several Layer 2 sidechains before: Polygon xDAI Binance Smart Chain But today might be the fastest of them all. On top it's tightly connected to the NEAR protocol ecosystem, a PoS chain with a scalable sharding design. And of course they have a bridge to Ethereum! What is the Aurora...
Ever wondered what the hell the deal is with the ecrecover command in Solidity? It's all about signatures and keys... What is ecrecover ? You may have seen ecrecover in a Solidity contract before and wondered what exactly the deal with this was. Well you came across the EVM precompile ecrecover....
Defi has been a major contributor to the Binance Smart Chain taking off recently. Along with increasing gas costs on Ethereum mainnet which are actually at one of the lowest levels since a long time at the time of this writing, but will likely pump again at the next ETH price pump. So how does...
If you're not familiar with Uniswap yet, it's a fully decentralized protocol for automated liquidity provision on Ethereum. An easier-to-understand description would be that it's a decentralized exchange (DEX) relying on external liquidity providers that can add tokens to smart contract pools and...
The Berlin Hardfork only just went live on April 14th after block 12,224,00. Next up will be the London Hardfork in July which will include EIP-1559 and is scheduled for July 14th (no exact block decided yet). So let's take a look at the new changes and what you need to know as a developer....
We all love Ethereum, so you've built some great smart contracts. They are tested intensely with unit-tests and on testnets. Now it's finally time to go to mainnet. But this is a tricky business... 1. What exactly is a deployment transaction? First let's quickly discuss what a contract deployment...
You've probably heard of SushiSwap by now. The Uniswap fork brought new features like staking and governance to the exchange. But how exactly are the contracts behind it working? It's actually not too difficult. Knowing how this works in detail will be a great way to learn about Solidity and...
Previously we learned all of the basics in 20 minutes. If you are a complete beginner, start there and then come back here. Now we'll explore some more advanced concepts, but again as fast as possible. 1. Saving money with events We all know gas prices are out of control right now, so it's more...
The Berlin Hardfork is scheduled for April 14th after block 12,224,00. Later to be followed by the London Hardfork in July which will include EIP-1559. So let's take a look at the new changes and what you need to know as a developer. EIP-2929: Increased gas costs for state access EIP-2929 will...
Gas prices have been occasionally above 1000 Gwei in the past in peak times. Given an ETH price of over 1000 USD, this can lead to insane real transaction costs. In particular this can be a pain when using onchain DEX's like Uniswap, resulting in hundreds of dollars transaction fees for a single...
The Openzeppelin v4 contracts are now available in Beta and most notably come with Solidity 0.8 support. For older compiler versions, you'll need to stick with the older contract versions. The beta tag means there still might be small breaking changes coming for the final v4 version, but you can...
As we've discussed last week, flash loans are a commonly used pattern for hacks. But what exactly are they and how are they implemented in the contracts? As of right now each protocol has its own way of implementing flash loans. With EIP-3156 we will get a standardized interface. The standard was...
With the recent Yearn vault v1 hack from just a few days ago, we can see a new pattern of hacks emerging: 1. Get anonymous ETH via tornado.cash. 2. Use the ETH to pay for the hack transaction(s). 3. Use a flash loan to decrease capital requirements. 4. Create some imbalances given the large...
It's always best to learn with examples. So let's build a little online casino on the blockchain. We'll also make it secure enough to allow playing in really high stakes by adding a secure randomness generator. Let's discuss the overall design first. Designing the contract Before we program...
Enabling meta transactions inside your contract is a powerful addition. Requiring users to hold ETH to pay for gas has always been and still is one of the biggest user onboarding challenges. Who knows how many more people would be using Ethereum right now if it was just a simple click? But...
As you may know the most expensive operation in Ethereum is storing data (SSTORE). So you should always look for ways to reduce the storage requirements. Let's explore a particularly useful one: Bitmaps. How to implement a simple Bitmap Let's assume we want to store 10 boolean values. Usually you...
We've covered Uniswap previously here. But let's go through the basics first again. What is UniSwap? If you're not familiar with Uniswap yet, it's a fully decentralized protocol for automated liquidity provision on Ethereum. An easier-to-understand description would be that it's a decentralized...
We’ve covered mocking contracts before, but now there’s an additional great tool available: smock. It simplifies the mocking process greatly and also gives you more testing power. You’ll be able to change the return values for functions as well as changing internal contract storage directly! How...
The ERC-721 standard has been around for a while now. Originally made popular by blockchain games, it's more and more used for other applications like Defi. But what exactly is it? A non-fungible token (NFT) is a uniquely identifying token. The word non-fungible implies you cannot just replace...
With Set Protocol you can create baskets of tokens that give users different levels of exposure to underlying assets (currently only ERC-20 tokens). Set Protocol and their TokenSet functionality is the perfect example for making use of the new paradigm of Defi and composability. You can let...
We are getting closer to that Solidity 1.0 release (unless of course after 0.9 comes 0.10). Now Solidity 0.8 has been released only 5 months after the 0.7 release! Let's explore how you can migrate your contracts today... New features & how to use them Let's look at the two big new features which...
ERC-1155 allows you to send multiple different token classes in one transactions. You can imagine it as transferring Chinese Yuan and US Dollars in a single transfer. ERC-1155 is most commonly known for being used in games, but there are many more use cases for it. First of all though, what are...
I'm always interested in what other ways one can use their blockchain and Solidity skills. While many projects are still only in the planning or in testnet status, with Rootstock (RSK) you can transfer mainnet Bitcoins to an EVM sidechain and vice-versa already today. Utilizing the power of the...
You might be familiar with the Learn X in Y minutes. For example you could learn JavaScript in 20 minutes at https://learnxinyminutes.com/docs/javascript/. Unfortunately there is no equivalent for Solidity, but this is about to change. Do you have 20 minutes to learn all of the basics? We even...
We all love Etherscan. It's a great tool to interact with contracts, read the source codes or just see the status of your transactions. But unfortunately as great as it is, we should not forget that it's a centralized service. The website could be taken down any day. This kind of defeats the...
How can you add 0x to your contracts to automatically convert between tokens? We have done this in a similar fashion before with Uniswap and Balancer. The 0x API has a bit of a twist. Let's take a look why... Why you want 0x in your contracts? It's simple: Okay, but seriously. Let's see why the...
You might have heard about the COMP token launch. With a current market cap of over 350 million USD, the token has accumulated massive value. But what is the actual utility of COMP? It's a governance token. Compound being a fully decentralized system (or at least on the way towards it), has a...
Do you remember the beginning of the Dark Forest story? If not, let's look at it again: Somebody sent tokens to a smart contract that was not intended to receive tokens. This perfectly illustrates one of the issues not only with ERC-20 tokens, but generally with smart contracts. How can we find...
As we all know, it's very difficult writing a complex, yet fully secure smart contract. Without the proper methods, chances are you will have many security issues. Automated security testing tools already exist and can be a great help. One of the main challenges for these tools is to maximize...
It's April 2019 in Sydney. Here I am looking for the Edcon Hackathon inside the massive Sydney university complex. It feels like a little city within a city. Of course, I am at the wrong end of the complex and I realize to get to the venue hosting the Hackathon I need to walk 30 minutes to the...
Waffle has been a relatively recent new testing framework, but has gained a lot of popularity thanks to its simplicity and speed. Is it worth a try? Absolutely. I wouldn't run and immediately convert every project to it, but you might want to consider it for new ones. It's also actively being...
Gas costs are exploding again, ETH2.0 is still too far away and people are now looking at layer 2 solutions. Here's a good overview of existing layer 2 projects: https://github.com/Awesome-Layer-2/awesome-layer-2. Today we will take a closer look at xDai as a solution for your Dapp. What are...
You just have to add one tiny change in your contracts. You think this will take you only a few seconds. And you are right, adding the code took you less than a minute. All happy about your coding speed you enter the compile command. With such a small change, you are confident your code is...
By now you've probably heard of Chainlink. Maybe you are even participating the current hackathon? In any case adding their new contracts to retrieve price feed data is surprisingly simple. But how does it work? Oracles and decentralization If you're confused about oracles, you're not alone. The...
Previously we looked at the big picture of Solidity and the create-eth-app which already mentioned TheGraph before. This time we will take a closer look at TheGraph which essentially became part of the standard stack for developing Dapps in the last year. But let's first see how we would do...
Unlike compiled languages, you pretty much have no safeguards when running JavaScript code. You'll only notice errors during runtime and you won't get autocompletion during coding. With Typescript you can get proper typechecking as long as the used library exports its types. Most Ethereum...
What is Balancer? Balancer is very similar to Uniswap. If you're not familiar with Uniswap or Balancer yet, they are fully decentralized protocols for automated liquidity provision on Ethereum. An easier-to-understand description would be that they are decentralized exchanges (DEX) relying on...
You would think calling a few functions on an ERC-20 token is the simplest thing to do, right? Unfortunately I have some bad news, it's not. There are several things to consider and some errors are still pretty common. Let's start with the easy ones. Let's take a very common token: ... Now to...
If you're writing contracts that use, hold or manage user funds, you might want to consider using those funds for generating free extra income. What's the catch? That's right, it's basically free money and leaving funds unused in a contract is wasting a lot of potential. The way these...
Gas costs are exploding again, ETH2.0 is still too far away and people are now looking at layer 2 solutions. Here's a good overview of existing layer 2 projects: https://github.com/Awesome-Layer-2/awesome-layer-2. Today we will take a closer look at Polygon (previously known as Matic) as a...
Why Buidler? Proper debugging is a pain with Truffle. Events are way too difficult to use as logging and they don't even work for reverted transactions (when you would need them most). Buidler gives you a console.log for your contracts which is a game changer. And you'll also get stack traces...
The factory design pattern is a pretty common pattern used in programming. The idea is simple, instead of creating objects directly, you have an object (the factory) that creates objects for you. In the case of Solidity, an object is a smart contract and so a factory will deploy new contracts for...
You may have heard about IPFS before, the Interplanetary File System. The concept has existed for quite some time now, but with IPFS you'll get a more reliable data storage, thanks to their internal use of blockchain technology. Filecoin is a new system that is incentivizing storage for IPFS...
Why is there a limit? On November 22, 2016 the Spurious Dragon hard-fork introduced EIP-170 which added a smart contract size limit of 24.576 kb. For you as a Solidity developer this means when you add more and more functionality to your contract, at some point you will reach the limit and when...
What is the EXTCODEHASH? The EVM opcode EXTCODEHASH was added on February 28, 2019 via EIP-1052. Not only does it help to reduce external function calls for compiled Solidity contracts, it also adds additional functionality. It gives you the hash of the code from an address. Since only contract...
Note : For Uniswap 3 check out the tutorial here. What is UniSwap? If you're not familiar with Uniswap yet, it's a fully decentralized protocol for automated liquidity provision on Ethereum. An easier-to-understand description would be that it's a decentralized exchange (DEX) relying on external...
Continuous integration (CI) with Truffle is great for developing once you have a basic set of tests implemented. It allows you to run very long tests, ensure all tests pass before merging a pull request and to keep track of various statistics using additional tools. We will use the Truffle...
Biggest virtual hackathon almost finished First of all, the current HackMoney event has come to an end and it has been a massive success. One can only imagine what kind of cool projects people have built in a 30 days hackathon. All final projects can be seen at:...
You know what an ERC-20 is, you probably have created your own versions of it several times (if not, have a look at: ERC-20). But how would you start in 2020 using the latest tools? Let's create a new ERC-2020 token contract with some basic functionality which focuses on simplicity and latest...
You have mastered the basics of Solidity, created your first few useful projects and now want to get your hands on some real-world projects. Getting a Solidity developer job might be easier than you think. There are generally plenty of options to choose from and often times not a lot of...
Mock objects are a common design pattern in object-oriented programming. Coming from the old French word 'mocquer' with the meaning of 'making fun of', it evolved to 'imitating something real' which is actually what we are doing in programming. Please only make fun of your smart contracts if you...
Last time we looked at the big picture of Solidity and already mentioned the create-eth-app. Now you will find out how to use it, what features are integrated and additional ideas on how to expand on it. Started by Paul Razvan Berg, the founder of sablier, this app will kickstart your frontend...
Now, I do not know about you, but I remember when I first started with Solidity development being very confused by all the tools and services and how they work in connection with one another. If you are like me, this overview will help you understand the big picture of Solidity development. As I...
You may or may not be used to a garbage collectors in your previous programming language. There is no such thing in Solidity and even if there was a similar concept, you would still be better off managing state data yourself. Only you as a programmer can know exactly which data will not be used...
Using Windows for development, especially for Solidity development, can be a pain sometimes, but it does not have to be. Once you have configured your environment properly, it can actually be extremely efficient and Windows is a very, very stable OS, so your overall experience can be amazing. The...
You have probably seen this error message a lot of times: Error: VM Exception while processing transaction: out of gas Disclaimer : Unfortunately, this does not always actually mean what it is saying when using Truffle , especially for older versions. It can occur for various reasons and might be...
Closely related to the concept of finite-state machines, this pattern will help you restrict functions in your contract. You will find a lot of situations where it might be useful. Any time a contract should allow function calls only in certain stages. Let's look at an example: contract Pool {...
A new Web3 version was just released and it comes with a new feature that should make your life easier. With the latest version 1.2.5, you can now see the the revert reason if you use the new handleRevert option. You can activate it easily by using web3.eth.handleRevert = true . Now when you use...
I recently came across an ambitious company that will completely redefine the way we are using the internet. Or rather, the way we are using its underlying infrastructure which ultimately is the internet. While looking at their offering, I also learned how to get anonymous cloud machines, you...
I had a lot to catch up on after Devcon. Also things didn't go quite as planned, so please excuse my delayed review! This year's Devcon was certainly stormy with a big typhoon warning already on day 1. Luckily (for us, not the people in Tokyo), it went right past Osaka. Nevertheless, a lot of...
Devcon 5 is coming up soon and there are already lots of events available, information about Osaka and more. Here is a short overview: Events Events Calendar Events Google Docs Events Kickback Most events are in all three, but if you really want to see all, you will have to look at all three...
As you might have realized, Ethereum transactions are anything but cheap. In particular, if you are computing complex things or storing a lot of data. That means sometimes we cannot put all logic inside Solidity. Instead, we can utilize off-chain computations to help us. A very simple example...
There are a few reasons why you might want to initialize a contract after deployment and not directly by passing constructor arguments. But first let's look at an example: contract MyCrowdsale { uint256 rate; function initialize(uint256 _rate) public { rate = _rate; } } What's the advantage over...
Consensys published their blockchain jobs report which you can checkout in their Blockchain Developer Job Kit. The most interesting aspects are Blockchain developer jobs have been growing at a rate of 33x of the previous year according to LinkedIns jobs report Typical salary is about...
One particularly interesting approach by Provable is the usage of a hardware security device, namely the Ledger Nano S. It uses a trusted execution environment to generate random numbers and provides a Provable Connector Contract as interface. How to use the Provable Randomness Oracle? Use the...
There has been a lot of progress since the beginning of Ethereum about best practices in Solidity. Unfortunately, I have the feeling that most of the knowledge is within the circle of experienced people and there aren’t that many online resources about it. That is why I would like to start this...
Watch out for the Devcon 5 applications. You only have one week left to apply either as Buidler Student Scholarship Press Devcon is by far the biggest and most impressive Ethereum conference in the world. And it's full of developers! I am especially excited about the cool location this year in...
When we talk about randomness and blockchain, these are really two problems: 1. How to generate randomness in smart contracts? 2. How to produce randomness for proof-of-stake (POS) systems? Or more generally, how to produce trusted randomness in public distributed systems? There is some overlap...